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1 Introduction

As macroeconomic models grow in size and complexity, it has become increasingly

difficult to determine where in the data information about different model parameters

comes from. This lack of transparency is one of the main reasons why the existing

research on empirical dynamic stochastic general equilibrium (DSGE) models is viewed

by some with a high degree of skepticism.1

In this paper we propose a new method for identifying the main sources of information

about parameters in the moment structure of DSGE models. Thus, we address the

question of where information comes from in terms of which particular moment or a

group of moments contribute the most information with respect to different parameters.

Starting with a complete set of available moments, as a representation of the total amount

of available information, our method allows us to quantify the relative importance of any

given subset of moments with respect to individual parameters of interest. In particular,

we are able to compare the informativeness of moments of individual variables or of

cross-moments of several variables, as well as to rank individual moments in terms of

the amount of information they contribute with respect to a specific parameter.

We study the information content of moments by adopting the framework of the

generalized method of moments (GMM). As shown in Hansen (1982), GMM estimators

based on a set of valid population moment conditions are consistent and asymptotically

normally distributed. Furthermore, from Chamberlain (1987) we know that optimally-

weighted GMM estimators are asymptotically efficient in the class of estimators based on

the same set of moment conditions. Therefore, the amount of information in a given set

of moment conditions can be quantified using the asymptotic covariance matrix of the

efficient GMM estimator. We use this property to measure and compare the information
1See e.g Blanchard (2017) and Romer (2016) for broader critical appraisals of the current DSGE

framework.
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content of different parts of the moment structure of DSGE models. Specifically, we

consider a GMM estimator with population moment conditions defined as the difference

between sample and model-implied moments of observed variables. We then measure

the amount of information in a particular set of moments using the covariance matrix of

the asymptotic distribution of the efficient GMM estimator based on those moments.

By conditioning on different parts of the moment structure and comparing the resulting

covariance matrices, we are able to assess the relative informativeness of different subsets

of moments.

We emphasize that the purpose of our analysis is not to guide researchers in the

selection of a small number of moments, which then to use for either estimation or

calibration of a given model. DSGE models are typically estimated with full information

approaches, either by maximum likelihood or by Bayesian methods. In either case,

all sample information about the estimated parameters is contained in the likelihood

function; our goal here is to determine which parts of the likelihood provide the most

information about parameters of interest. To be concrete, a well-known property of

linearized Gaussian models – the class of models we focus on, is that all relevant

information is contained in the first and second-order moments of the observed variables.

The question we address, therefore, is: what is the relative contribution of information

by different moments – means, covariances and (cross) auto-covariances, with respect to

any given model parameter?

To the best of our knowledge, ours is the first paper that shows how to formally

analyze the sources of information in the moment structure of DSGE models. The issue

itself is sometimes discussed in the empirical literature, largely in an informal manner.

A notable example is Schorfheide (2008) who investigates the sources of information

about the parameters of the New Keynesian Phillips curve. The author emphasizes the

information advantages of using a full information likelihood-based system approach
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over single-equation estimation, and describes how information in contemporaneous

and dynamic interactions among observed variables help identify the Phillips curve

parameters. At the same time, in spite of the simplicity of the model, which is a stripped

down three-equation New Keynesian system, the discussion is largely verbal without an

attempt to quantify the relative importance of different information sources. A more

recent example in the same vain is Rı́os-Rull et al. (2012) who discuss the sources of

information with respect to the aggregate labor supply elasticity parameter in a standard

real business cycle model.

In terms of methodology, our paper is most closely related to Andrews et al. (2017a)

who propose a local measure of sensitivity of parameter estimates to moments of the

data. Similar to our approach, their measure is based on an asymptotic approximation of

the mapping from moments to estimated parameters. Instead of quantifying the relative

informativeness of the moments, however, the purpose of their measure is to identify the

moments to which the parameter estimates are most sensitive, and which, if misspecified,

could cause potentially large biases in the results. The second and more fundamental

difference between our paper and Andrews et al. (2017a) is that their sensitivity measure

is interpreted as a property of an estimator, while our measure of information content

is a property of a model. Our approach takes a completely specified model as given,2

and asks what that model implies about the information content of different parts of

the moment structure of the model’s observable variables. A crucial requirement for us

to be able to answer this question is that, in addition to having valid GMM moment

conditions, we also use the correct optimal weighting matrix. Any other suboptimal

moment weighting scheme would no longer be about the model per se as it would not

fully capture the true information content of the moments under consideration.3 One of
2A model is completely specified if we know everything necessary to simulate data from that model.
3For instance, it is easy to come up with examples where suboptimal weighting matrices would imply

that using a larger number of valid moments is asymptotically less efficient than using fewer moments,
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the contributions of our paper is to show how to evaluate the true optimal weighting

matrix for a wide range of DSGE models. In contrast, Andrews et al. (2017a) take an

estimator, i.e. a set of moment conditions and a weighting matrix, as given, and ask how

perturbations in the moment conditions, due to misspecification in some dimensions,

are translated by the estimator into asymptotic bias in the parameter estimates. Hence,

their moment sensitivity analysis can be applied in a wide range of estimation problems,

while our approach is only feasible in the context of fully specified models, such as DSGE

models.

To be clear, one does not have to accept that a particular model is correctly specified

for our analysis to be useful.4 Its purpose is not to criticize models or evaluate their

plausibility, but to understand what a given model implies about the main sources of

information with respect to its parameters. We believe that conducting and reporting

the results from this analysis will benefit both researchers estimating DSGE models

and the readers of such research, by improving their understanding and increasing the

transparency of estimated structural models. In that respect, our analysis is related to,

and can be thought of as an extension of the local identification analysis of DSGE models

(see, inter alia, Canova and Sala (2009), Iskrev (2010), Komunjer and Ng (2011), Qu and

Tkachenko (2012)). In addition to checking whether the parameters of DSGE model are

locally identified, we ask what the main sources of the information are. Similarly to the

local identification analysis, the model itself, as well as the point in the parameter space

where the analysis is conducted, are taken as given, and the answers one obtains are

conditional on the model and the values.

Our paper is also related to the literature on redundant moments in GMM. Breusch

et al. (1999) define as redundant moment conditions which contribute no information with

see Meng and Xie (2014).
4See Inoue et al. (2019) for a recent work on detecting misspecification in DSGE models.
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respect to the estimated parameters. More specifically, a set of moment conditions is called

redundant relative to another set of moment conditions if adding the former to the latter

does not increase the asymptotic efficiency of the GMM estimator. Similarly, moment

conditions which contribute no additional information with respect to a subset of the

estimated parameters are called partially redundant. Redundancy and partial redundancy

are binary concepts and the purpose of detecting redundant moment conditions is

to achieve a better finite sample behavior of the GMM estimator by removing such

moments.5 Instead, our goal here is to determine the relative information content of

different moments. Therefore, we are interested not just in whether there is an increase

in efficiency as a result of adding a set of moments, but also in the magnitude of the

efficiency gain. Note that, like the notion of redundancy, our measure of the amount

of information contributed by a set of moments is conditional on what other moments

are being utilized. This means that if, for instance, two sets of moments contain similar

information, the relative contribution of either one of them is small. In other words, each

set of moments contributes a small amount of unique information. We show an example

of this phenomenon in our application where the relative contribution of information by

moments of investment is shown to be much larger when consumption is not observed

than when it is observed.

The remainder of the paper is organized as follows. Section 2 introduces the general

setup, and reviews some standard properties of GMM estimators. It also defines our

measure of the amount of information contributed by a given set of moments. The

proposed measure is applied in Section 3 to identify the main sources of information with

respect to parameters of a medium-scale DSGE model. The model is a real business

cycle model with news shocks taken from Schmitt-Grohé and Uribe (2012). We study the
5See Andrews et al. (2017b) for simulation evidence on the effect of using redundant moment

conditions in instrumental variables estimation.
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contribution of information by moments across several dimensions, namely: lag structure,

single and pairs of observed variables, as well as individual moments. Section 4 contains

some concluding remarks.

2 Methodology

This section describes our approach to measuring the information content of moments

with respect to DSGE model parameters. First, we introduce the class of linearized

Gaussian models and derive their moment structure. Then, we review some standard

properties of GMM estimators and show how to use them to quantify the contribution

of information by a set of moments with respect to parameters of interest.

2.1 Moment structure of linear Gaussian DSGE models

A linearized DSGE model can be expressed as a linear state space system with a state

transition and measurement equations given by:6

st = Φ1(θ)st−1 +Φε(θ)εt (2.1)

yt = Ψ0(θ) + Ψ1(θ)st (2.2)

where yt is a ny vector of observed variables, st is a ns vector of state variables, εt is a

nε vector of exogenous shocks, Φ1 is ns × ns matrix, Φε is a ns × nε matrix, Ψ0 is ny

vector, and Ψ1 is a ny × ns matrix. In general, the coefficient matrices in (2.1) and (2.2)

are functions of the structural parameters of the model, collected in the nθ vector θ.

Assume that the structural shocks are drawn from a Gaussian distribution, i.e. εt ∼

N (0, Inε). The linear state space structure of the model implies that the autocovariance
6See Fernández-Villaverde et al. (2016) for more details on the results presented here.
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matrix Γyy(h) = cov (yt,yt−h) can be computed as

Γyy(h) = Ψ1(θ)Γss(h)Ψ1(θ)′ (2.3)

where, for h = 0, Γss(h) solves the equation

Γss(0) = Φ1(θ)Γss(0)Φ1(θ)′ +Φε(θ)Φε(θ)′ (2.4)

and, for h 6= 0, the autocovariances of st are computed using

Γss(h) = Φh1(θ)Γss(0) (2.5)

Furthermore, the unconditional mean µ = Eyt of yt is given by

µ = Ψ0(θ) (2.6)

The linearity of the model and Gaussianity of the exogenous shocks εt imply that the joint

probability distribution of a T × ny vector of observations YT = [y′1,y′2, . . . ,y′T ]′ is also

Gaussian. This means that the probability distribution is fully characterized by the first

and second order moments of YT . Hence, all relevant model-implied information about θ is

contained in the mean µ and the sequence of autocovariances Γyy(0), Γyy(1), . . . ,Γyy(T−

1) of yt. Our objective is to determine which of these moments are most useful in terms

of the information they provide with respect to different model parameters. To do

that we adopt a generalized method of moments framework, where theoretical first

and second-order moments are matched to their empirical counterparts. This approach

is motivated by the result that a GMM estimator with optimal weighting matrix is

asymptotically efficient among all the consistent estimators utilizing the same set of

moment conditions. Efficiency implies that the GMM estimator utilizes the included

moments in an optimal fashion, maximizing their information content to achieve the

lowest possible estimation uncertainty. As we explain next, we use this property to

determine the amount of information contributed by different parts of the moment
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structure.

2.2 GMM and information in the moment structure of YT

We consider a GMM estimator θ̂T (p) which matches the model-implied value of a vector

of moments

m(θ, p) = [µ′, vech(Γyy(0))′, vec(Γyy(1))′, ..., vec(Γyy(p))′]′,

where p ≤ T − 1, to their sample counterparts, collected in the vector m̂T (p). The

estimator is defined as the solution to the following optimization problem:

θ̂T (W , p) = argmin
θ

{
(m(θ, p)− m̂T (p))′WT (m(θ, p)− m̂T (p))

}
, (2.7)

where WT is a positive definite and possibly random weighting matrix converging in

probability to a positive definite matrix W . Under the regularity condition in Hansen

(1982), θ̂T (p) is consistent and asymptotically normally distributed with
√
T
(
θ̂T (p)− θ0

)
d−→ N (0,Vθ(W , p)) . (2.8)

For a given weighting matrix W the asymptotic covariance matrix is:7

Vθ(W , p) = (M (p)′WM(p))−1M (p)′WVm(p)W (p)M (p)(M(p)′WM(p))−1 (2.9)

where M (p) = ∂m(θ0, p)/∂θ′ is the Jacobian matrix of the moment conditions with

respect to θ, and Vm(p) is the asymptotic covariance matrix of the moment condition,
√
T (m̂T (p)−m(θ0, p)) d−→ N (0,Vm(p)) (2.10)

For a given set of moments in m(θ, p), the efficiency of the GMM estimator depends

on the choice of weighting matrix W . As shown by Hansen (1982) and Chamberlain
7Note that the sensitivity measure of Andrews et al. (2017a) is defined as

Λ = −(M(p)′WM(p))−1M(p)′W
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(1987), the GMM estimator is asymptotically efficient among the estimators using the

same set of moment conditions when W is equal to the inverse of Vm(p). In that case,

the asymptotic covariance matrix of θ̂T (p) is

V ∗θ (p) =
(
M(p)′Vm(p)−1M (p)

)−1
(2.11)

Asymptotic efficiency implies that, for large T , the estimation uncertainty of any

consistent estimator of θ is greater than or equal to that of θ̂T . In order to evalu-

ate V ∗θ (p) we need the asymptotic covariance matrix of the sample moments Vm(p).

Note that this matrix is block diagonal with blocks Vµ = lim
T→∞

T cov (µ̂T − µ), and

Vγ(p) = lim
T→∞

T cov (γ̂T (p)− γ(p)) corresponding to the mean vector µ and the vector

of second order moments γ(p) = [vech(Γyy(0))′, vec(Γyy(1))′, ..., vec(Γyy(p))′]′. It is well

known (see e.g. Fuller (1996)) that Vµ is equal to 2π times the spectral density of yt

evaluated at frequency zero. Therefore, using (2.1)–(2.2) we have

Vµ =
∞∑

h=−∞
Γ (h) = Ψ1 (Im −Φ1)−1ΦεΦ

′
ε (Im −Φ′1)−1

Ψ ′1 (2.12)

To compute the asymptotic covariance matrix of γ(p), we use the multivariate version

of the so-called Bartlett formula (see Bartlett (1955)). In particular, Su and Lund

(2012) show that, if γi,j(q) is the autocovariance at lag q between the i−th and the

j−th components of yt, then the joint asymptotic distribution of any two sample

autocovariances γ̂a,b(q1) and γ̂c,d(q2) is given by

√
T


 γ̂a,b(q1)

γ̂c,d(q2)

−
 γa,b(q1)

γc,d(q2)


 d−→ N

0,
 ωq1,q1 ωq1,q2

ωq2,q1 ωq2,q2


 , (2.13)

where

ωk,l =
∞∑

h=−∞

(
γa,c(h)γb,d(h− k + l) + γa,d(h+ l)γb,c(h− k)

)
(2.14)

Using (2.13), we can construct the full asymptotic covariance matrix of γ. Unlike

Vµ, which can be evaluated in closed form using (2.12), in general Vγ(p) has to be
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approximated by truncating the infinite sum in (2.14). However, since the terms involved

in the summation are very easy to compute, for any lag, with the formula in (2.3), matrix

Vγ(p) can be approximated arbitrarily well using the the expression in (2.13). Note

that the expressions in (2.13)–(2.14) are valid only for Gaussian models. In the case of

non-Gaussian models one needs to account for the non-zero higher order moments of the

distribution. Details on how to compute the asymptotic covariance matrix of γ in the

case of non-Gaussian models can be found in Su and Lund (2012).

Using these results, we are able to evaluate the asymptotic covariance matrix of the

GMM estimator for a given set of moment conditions and any weighting matrix W .

Suppose that we want to know how much additional information about θ is contributed

by auto and cross-autocovariances at lag p+ 1, given the information contained in the

mean and autocovariances at lags from 0 to p. The size of this contribution can be

determined by comparing V ∗θ (p+ 1) to V ∗θ (p). Alternatively (and equivalently), we could

compare V ∗θ (p+ 1) and Vθ(W , p+ 1), where the weighting matrix W is constructed so

as to weight the moments in m(p) optimally – using Vm(p), while placing zero weights

on the elements of vec(Γyy(p + 1)). More generally, starting with a complete set of

moments, say m(P ), we can measure the contribution of information by any subset of

moments m̄ ⊂m(P ) by constructing a weighting matrix which weights optimally the

moments in the complement of m̄, m̄c = m(P ) \ m̄, and puts zero weights on the ones

in m̄. The difference between Vθ(W , P ) and V ∗θ (P ) shows the marginal contribution of

information about θ that is due to m̄.

In practice, we are often more interested in the contribution of information by a set

of moments with respect to individual elements of θ. Therefore, we define a measure of

efficiency gains that uses the diagonal elements of the asymptotic covariance matrices of

efficient GMM estimators based on different sets of moments. Specifically, let std(θi|m̄c)

and std(θi|m(P )) be the square roots of the diagonal elements of Vθ(W , P ) and V ∗θ (P ),

11



respectively. The efficiency gain (EG) due to m̄ with respect to parameter θi is defined

as

EGθi
(m̄|m̄c) =

(
std(θi|m̄c)− std(θi|m(P ))

std(θi|m̄c)

)
× 100. (2.15)

Note that (2.15) is a measure of conditional gain, i.e. the increase in efficiency of the

GMM estimator of θi due to information in m̄ given the information already in m̄c.

Using the above approach allows us to compare the efficiency of GMM estimators

that use different subsets of moments from the moment structure of YT . In addition, we

may also be interested in comparing the efficiency of the GMM estimator and the full

information maximum likelihood (ML) estimator. The ML estimator θ̂mlT solves

θ̂mlT = argmax
θ

`(θ|YT ) (2.16)

where `(θ|YT ) is the logarithm of the likelihood function of YT . The asymptotic

distribution of θ̂mlT is
√
T (θ̂mlT − θ0) d−→ N

(
0, I−1

θ

)
(2.17)

where Iθ is the asymptotic Fisher information matrix evaluated at the true value of θ.

A key property of the MLE is that it is asymptotically efficient among all consistent

estimators of θ. Therefore, the asymptotic covariance matrix of the MLE is a lower bound

on the uncertainty of the parameter estimates, which can be reached asymptotically

using all available sample information. As Carrasco and Florens (2014) show, under

certain conditions, the optimal GMM estimator is asymptotically as efficient as the

MLE. This suggests that, as we increase the number of lagged autocovariances used by

the optimal GMM estimator, its asymptotic covariance matrix should converge to the

covariance matrix of MLE.
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3 An Application

In this section, we apply our method to a DSGE model with news shocks estimated in

Schmitt-Grohé and Uribe (2012). This is a closed economy real business cycle model

augmented with real rigidities in consumption, investment, capital utilization, and wage

setting. The details of the model are given in the Appendix. We take as given the

estimation setup and results of the original article, i.e. assume the same free parameters

and observed variables, and use the estimation results reported there in our analysis.8

Our objective is show what how our approach can be used to shed light on the question

of what features of the data, i.e. moments of the observables, inform the estimates of

key parameters of that model.

SGU estimate the model using quarterly U.S. data for the period between 1955:Q2

and 2006:Q4. The variables they use are: the growth rates of per capita real GDP (yt),

real consumption (ct), real investment (it), and real government expenditure (gt) the

growth rates of the relative price of investment (at) and of total factor productivity (tfpt),

and hours worked (ht). All series are demeaned, which implies that only information

from second-order moments is used in estimation. Note, however, that this does not lead

to a loss of information with respect to the estimated parameters since all parameters

for which the first-order moments are informative are calibrated prior to estimation. In

other words, the means of the observed variables are redundant with respect to the set of

freely estimated parameters. Thus, in the following analysis we consider only moments

from the covariance structure of the seven observed variables.

There are 34 free parameters, 6 of which are related to preferences and technology, 7

are autoregressive coefficients of shocks, and the remaining 21 parameters are standard
8In our analysis we use the point values from the ML estimation reported in Schmitt-Grohé and

Uribe (2012) (see Table II of the article). Using the mean or the mode from the posterior distribution
instead does not change the results substantially. These results are available upon request.
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deviations of anticipated and unanticipated innovations to shocks.9 Since the purpose of

this section is only to illustrate how our approach works, here we focus on a subset of the

estimated parameters. The parameters we consider are (1) standard deviations of the

6 innovations to the permanent (σ0
µa , σ

4
µa , σ

8
µa) and transitory (σ0

zI , σ
4
zI , σ

8
zI ) investment-

specific productivity shocks, and (2) all parameters that are not related to shocks –

Frisch elasticity of labor supply (θ), wealth elasticity of labor supply (γ), investment

adjustment cost (κ), capacity utilization cost (δ2/δ1), habit (b), smoothness of trend in

government spending (ρxg). Results about the remaining parameters are presented in an

on-line appendix.

In general, one could divide the moment structure into many different groups of

moments. In our analysis we consider four such groups: moments at different lags,

moments of different variables, cross-moments of different pairs of variables, and individual

moments.

3.1 Lag structure

Here we analyze how information about θ accumulates as we add more lagged autoco-

variances to the set of included moments. Our purpose is two-fold. First, to determine

whether certain lagged autocovariances play a crucial role with respect to some parame-

ters, in particular those of the news shocks. Second, to compare the efficiency of the

optimal GMM estimator to that of the ML estimator, which, as noted earlier, achieves

the asymptotic Cramér-Rao (CR) bound. We do that by computing the asymptotic

standard deviations of the efficient GMM estimators and of the ML estimator using

the results of Section 2. The relative efficiency of GMM with a given number of lagged

autocovariance and MLE is measured with the ratio of the two standard deviations.

Figure 1 present results for the investment-specific productivity shock parameters. The
9In addition to the structural parameters SGU estimate one measurement error parameter.
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Figure 1: Investment-specific productivity shocks parameters. The figure shows the
asymptotic efficiency of GMM estimator for different number of lags relative to MLE.

bars in each bar plot show the ratios of the asymptotic standard deviations of the efficient

GMM estimator based on all covariances and autocovariances up to lags from 1 to 10,

divided by the asymptotic standard deviation of the MLE.10 Several results are worth

noting: First, as more lags are added the standard deviations of the GMM estimator

decrease monotonically towards the standard deviations of MLE. This is not a general

property of GMM estimators, i.e. one that holds for any choice of a weighting matrix.

As explained in Meng and Xie (2014) adding more information does not guarantee that

the estimation uncertainty will decrease, unless the information is used in an optimal
10In principle, we could also consider a GMM estimator which uses only the contemporaneous

covariances. However, this gives us only 28 moment conditions with which we cannot identify the 34
free parameters. For identification of all free parameters it is sufficient to use the covariance and first
order autocovariance matrices of the observed variables.

15



fashion, as in the case of MLE or GMM estimators with optimal weighting matrices.11

In the case of the µa shock parameters, by lag 10 the GMM standard deviations are

about 2% or less larger than their CR bounds. In the case of the zI shock the GMM

standard deviations are about 8% or less larger than the CR bounds. Second, it takes a

larger number of lags for the GMM standard deviations of the news shocks parameters

to decline substantially and come close to the respective CR bonds. For instance, by lag

3 the GMM standard deviations of σ0
µa and σ0

zI are about 20% and 60% larger than the

CR bonds, while in the case of (σ4
µa , σ

8
µa) and (σ4

zI , σ
8
zI ) the standard deviations are more

than 760% and 130% greater than the respective bounds. Third, there is a significant

and distinct impact of adding autocovariances at lags 4 and, to a lesser extent, 8 on the

GMM standard deviations of the µa news shock parameters but not in the case of the

zI news parameters. For both σ4
µa and σ8

µa the standard deviations drop by more than

80% when autocovariances up to lag 4 are used, compared to using only autocovariances

up to lag 3. Increasing the number of lags from 7 to 8 results in a decline by 16% and

28%, for σ4
µa and σ8

µa , respectively. Although much smaller, the effect of using 8 instead

of 7 lags is notable as it is larger than the cumulative impact of adding lags 5, 6 and

7, compared to using only lags up to 4. In the case of the zI news shock parameters,

increasing the number of lags from 3 to 4 reduces the GMM standard deviations by 40%

(for σ4
zI ) and 27% (for σ8

zI ), while increasing the number of lags from 7 to 8 reduces the

standard deviations by 2% (for σ4
zI ) and 6% (for σ8

zI ).

Figure 2 shows results for the 6 structural parameters that are not related to shocks.

Again, as more lagged autocovariances are used, the efficient GMM estimator converges to

MLE in terms of efficiency. However, in the case of θ and especially δ2/δ1 the convergence

is quite slow. By lag 10 the GMM standard deviation of θ is more than 30% larger than
11In addition, as noted earlier, convergence in efficiency to MLE occurs only under certain conditions,

namely that the true score belongs to the closure of the linear space spanned by the moment conditions
of the GMM estimator, see Carrasco and Florens (2014).
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Figure 2: Structural parameters. See note to Figure 1.

the MLE standard deviation, and in the case of δ2/δ1 the relative inefficiency is almost

50%. For the remaining 4 parameters the GMM standard deviations are between 14%

and 5% larger than the respective MLE standard deviations. The largest in relative

terms drop in estimation uncertainty in all cases except ρxg occurs when the set of

autocovariances at lag 2 is added to the moment conditions of GMM estimator.

3.2 Observed variables

Next, we consider the contribution of information by moments of each observed variables.

There are two ways to define the information content of a variable: (1) as information only

from the own moments of that variable, e.g. the variance and all autocovariances of yt,

and (2) as information from all moments of a variable, e.g. the variance, autocovariances,

and all covariances and cross-autocovariances between yt and the other 6 variables. As
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Figure 3: Nonstationary (µa) and stationary (zI) investment-specific productivity shocks
parameters. The figure shows the efficiency gains due to moments of each observed variable.

explained in Section 2.2, we measure the amount of information contributed by the (own

or all) moments of a variable as the per cent reduction in estimation uncertainty, i.e. the

asymptotic standard deviation of the efficient GMM estimator, as a result of including

these moments in the set of moment conditions. Thus, we compare the asymptotic

covariance matrix of a GMM estimator based on a subset of moments to the covariance

matrix of an estimator that uses the complete set of moments. To find the latter, we use

the asymptotic covariance matrix of an efficient GMM estimator using all variances and

autocovariances up to lag 100. It is unnecessary to include autocovariance at a higher

order as the values of the standard deviations with up to 100 lags are already very close

to the MLE asymptotic standard deviations.

Figure 3 presents results for the parameters of the investment-specific productivity
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shocks. The bars in grey represent the efficiency gains due to the own moments of each

variable; the bars in black show the gains from all moments. The upper part of the

figure shows clearly that the relative price of investment (at) is a paramount source of

unique information with respect to the µa shock parameters. The efficiency gains are

about 90%. Among the other variables, hours (ht) and to a lesser extent tfpt also play

significant role. Note that bars with heights close to zero indicate that the moments

of the respective variable contain little unique information, and therefore adding them

to the moment conditions results in only small increase of estimation precision. Thus,

the results suggest that there is relatively little unique information with respect to the

µa shock parameters in all moments of yt, ct, it, and gt, and in the own moments of all

variables, including at.12 From the lower part of the figure we see that there is not a

single variable whose moments are as important for the zI shock parameters as at is

with respect to the µa parameters. The most significant sources of unique information

are the moments of ht and tfpt, especially with respect to σ0
zI , while it and at are about

as important in terms of the parameters of the news components of that shock.

Figure 4 shows results for the 6 non-shock parameters. Again, we see that ht, and

to a lesser extent tfpt, are the main sources of unique information with respect to 5 of

these parameters. The only exception is ρxg for which government spending (gt) replaces

ht in terms of importance. The moments of ht are particularly important for θ and γ,

whose asymptotic standard deviations are reduced by between 70% and 80% due to

information in those moments. Among the other variables, only ct plays a non-negligible

role for most parameters.

One robust conclusion we can draw from the results in Figures 3 and 4 is that the bulk

of the unique information about the parameters we analyze comes from cross-moments,
12There is about 15% efficiency gain with respect to σ0

µa from including the own moments of at, and
between 4% and 7% gain due to all moments of ct with respect to the µa parameters.
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Figure 4: Structural parameters. See note to Figure 3.

and not the own moments of individual variables. We next ask which particular groups

of cross-moments are the most significant sources of information.

3.3 Main groups of covariances

Since we have seven observed variables, the covariance structure of YT consists of 21

main groups of covariances, which we define as follows

cov(z1, z2) = [cov(z1,t−T+1, z2,t), . . . , cov(z1,t, z2,t), . . . , cov(z1,t, z2,t−T+1)] ,

for z1, z2 ∈ {y, c, i, g, a, tfp, h}, z1 6= z2. For example, all cross-(auto) covariances

between y and c are collected in cov(y, c). As in the previous section, the contribution

of information by a group of covariances is measured as the per cent reduction in the
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Figure 5: Nonstationary (µa) and stationary (zI) investment-specific productivity shocks
parameters. The figure shows the efficiency gains due the covariances in each group.

asymptotic standard deviations of the optimal GMM estimator when the moments of

that group are included in the set of moment conditions, relative to the asymptotic

standard deviations without those moments.

Figure 5 presents results for the investment-specific productivity shocks parameters.

We see that virtually all information about the µa shock parameters comes from covari-

ances of at and other variables, and most of it is from either the covariances between

at and ht, or the covariances between at and tfpt. The covariances between at and ht,
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in particular, are extremely informative with respect to the standard deviations of the

anticipated innovations to that shock. There is close to 60% reduction in the estimation

uncertainty of σ4
µa and σ8

µa due to the moments in cov(h, a), compared to about 20%

reduction due to cov(tfp, a). The cross-moments of ht and tfpt are the single most

important source of information about the parameter of the unanticipated innovations

to the zI shock, followed by covariances of these two variables with it and ct. Similarly,

the moments in cov(h, tfp), cov(i, tfp), and cov(i, h) provide the largest contributions

of information with respect to the parameters of the anticipated innovations to the zI

shock. However, consistent with the earlier observations, the information about the

parameters of that shock is much more dispersed across different moments compared to

the µa shock.

Figure 6 presents results for the 6 parameters unrelated to shocks. The covariances

between ht and tfpt are the most informative group of cross-moments for four of these

parameters, namely θ, κ, δ2/δ1, and b. In addition, the cross-moments of ht and tfpt with

c are also a significant source of information about b, while larger number of moments,

including the covariances between ht and tfpt with ct, it, and at provide about as much

unique information about δ2/δ1 as cov(h, tfp). For the remaining two parameters, the

moments in cov(c, h) are by far the most important ones for γ, while cov(g, tfp) and

cov(g, a) are the most informative groups of moments with respect to ρxg.

The results in this section show that in most cases there are only a few groups

of cross-moments which contribute the bulk of information with respect to estimated

parameters. Next, we examine whether there are particular individual moments which

on their own contribute significant portions of that information.
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Figure 6: Structural parameters. See note to Figure 5.

3.4 Individual moments

So far we have been comparing information contributed by different subsets of moments.

The purpose of this section is to determine which individual moments are most informative

with respect to the parameters we study. Note that with T observations, the covariance

structure of our model contains 49× T − 21 individual variances, covariances, and cross

auto-covariances. To find the most informative ones, we evaluate, in the same way as

before, the contribution of each moment and present in Figures 7 and 8 the top 10 most
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informative moments for each parameter.
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Figure 7: Nonstationary (µa) and stationary (zI) investment-specific productivity shocks
parameters. The figure shows the 10 most informative moments with respect to each

parameter.

Starting with the µa shock parameters, we see in Figure 7 that there is a clear

relationship between the type of innovation on one hand, and the order of the most

informative autocovariances. In particular, the most informative second moment with
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Figure 8: Structural parameters. See the note to Figure 7

respect to the unanticipated shock parameter is cov(at, ht), while cov(at, ht−4) and

cov(at, ht−8) contribute the largest amounts of information about σ4
µa and σ8

µa , respectively.

These covariances alone contribute between 13% and 23% of the unique information

about the µa shock parameters. Furthermore, the first three most important moments

in the case of σ0
µa are all contemporaneous covariances – the variance of at and the

25



covariances of at with ht and tfpt, while the three most informative moments with

respect to the news shock parameters are cross-autocovariances of at with ht and tfpt of

order either 4 or 8. Interestingly, we do not find a similarly well-defined relationship in

the case of the zI shock parameters. The variance of ht and the first order autocovariance

between ht and tfpt rank as the first and second most informative moments both for

σ0
zI and σ8

zI . In the case of σ4
zI , the first two moments are the autocovariance of order

5 of it and the corss-autocovariance of order 4 between it and ht. Furthermore, the

contributions of individual moments are much smaller and more uniform in size for

the parameters of the zI shock compared to the µa shock. In particular, the largest

contribution of individual moments – of cov(ht, ht) with respect to σ0
zI , is less than 6%,

while the most informative moment with respect to σ4
zI contributes only about 1%.

The most informative second moments with respect to the 6 non-shock parameters are

displayed in Figure 8. Again, (cross) moments of ht tend to be among the moments that

contribute the most information. Specifically, the contemporaneous covariance between

ht and tfpt and the first order cross-autocovariance between ht and ct are the moments

with largest contributions with respect to θ and γ, while the variance of ht is the most

informative moment for κ, δ2/δ1, and b. Lastly, in the case of ρxg the moment with

largest contribution of information is the first order cross-autocovariance between at and

gt. Similar to Figure 7, there is a considerable variation in the amounts of information

contributed by the most informative moments. In particular, note that the contribution

of cov(ht, ct−1) – the most informative moment with respect to γ, is more than twice as

large as the contribution of the second most informative moment, and more than seven

times as large as the contribution of the fourth most informative moment. At the same

time, in the case of κ the size of the contributions decreases very slowly, from close to

7% to about 5% by the tenth most informative moment.
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3.5 Discussion of the results

Several of our results merit further discussion. One surprising finding is the relatively

minor role variables like investment or consumption seem to play as sources of informa-

tion.13 In particular, one might expect investment to be a major source of information

for parameters such as the investment adjustment cost parameter (κ), or the standard

deviations of the innovations to the investment-specific productivity shock. Similarly,

consumption can be expected to be the main source of information for the consumption

habit parameter (b). The reason why we do not observed this in our results is that

the information these two variables provide is to a large extent not unique. That is,

most of the information in either investment or consumption is also contained in the

remaining 6 variables, when all of them are observed together. Consequently, observing

or not investment, for instance, has a relatively minor impact on the total amount of

information. One way to confirm this is to evaluate the contribution of investment

when consumption is not observed. Figure 9 shows the contributions of the remaining 6

variables with respect to the parameters of the zI shock. Investment is now the most

informative variable for these parameters, with efficiency gains between 60% and 80%.

When consumption is not among the observables, investment becomes also the most

informative variable with respect to the investment adjustment cost parameter, with

efficiency gain of about 70%. Similarly, we find that if investment is not observed,

consumption becomes the most informative variable with respect to the habit persistence

parameter, with efficiency gain of more than 70%.14 Note that similar results obtain if

other variables, in particular output or government spending, are excluded instead of
13As can be seen in the appendix, the moments of consumption are a major source of information

with respect to the parameters of the preference shock, and especially the standard deviations of the
news components of that shock.

14It should be noted that hours remain very informative with respect to b, with efficiency gain only a
little smaller than that of consumption. These results for κ and b are available upon request.
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consumption or investment. The reason why little information is lost when any one of

these four variables is removed can be traced to the resource constraint in the model,

which implies a tight relationship among these variables.
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Figure 9: Stationary investment-specific productivity shocks parameters. The figure shows
the efficiency gains due the moments of each observed variable.

The fact that information from variables like investment or consumption is, to a

certain degree, redundant, given the information from the other observables, could also

explain some of the differences in the results for the µa shock parameters, on one hand,

and most of other parameters, on the other. The relative price of investment, as well as

ht and tfpt, contain mostly non-redundant information. Because of that, the efficiency

gains from moments of at and the covariances of at with ht and tfpt are much larger than

the efficiency gains with respect to other parameters. In contrast, information about

the zI shock parameters is dispersed among covariances of ht and tfpt with variables

other than at, each contributing relatively small amount of unique information. The

same holds for other shock parameters, e.g. the neutral productivity and the markup

shock parameters, the results for which are presented in the appendix. In both cases the

main sources of information are either covariances of tfpt or tfpt and ht with variables

other than at. Consequently, the efficiency gains from groups of covariances or individual
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moments are relatively small.

Another result worth highlighting is the overall importance of hours worked and

TFP as sources of information. Moments of either ht or tfpt are the most significant

source of information in the case of 21 of the 34 free model parameters, often with the

other variable being the second most important one. In addition to θ, γ, κ, and δ2/δ1,

and the zI shock parameters, the moments of tfpt are the main source of information

with respect to the neutral productivity shock parameters, and especially the standard

deviations of the non-stationary component of that shock. Similarly, ht is the most

informative variable with respect to the parameters of the wage-markup shock.

4 Conclusion

Modern DSGE models are often too large and complex to permit researchers to determine

the most informative features of the data by reasoning alone. This paper has proposed a

new method for identifying the main sources of parameter information in the moment

structure of DSGE models. The method is based on comparing the relative contribution

of information by different groups of moments of variables used in estimation. Our

measure of information is derived using the asymptotic distribution of the efficient GMM

estimator and is easy to compute even for large-scale models. We have demonstrated the

usefulness of our approach with an application to a news-driven DSGE model estimated

with US data. We believe that conducting and reporting the results from such analysis

would benefit both researchers estimating DSGE models and readers of such research,

by improving their understanding and increasing the transparency of estimated DSGE

models.
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